|

‘ EPROMMER 64

f instruction manual

| X 5
: | .
_ _ : "'/'
N/
§
L
f-

BEFORE CONNECTING OR DISCONNECTING EPROMMER 64 ALWAYS MAKE SURE
THAT YOUR COMPUTER IS SWITCHED OFF. FAILURE TO DO SO WILL RESULT
IN SERIOUS DAMAGE. ; s T

Epromer 64 is plugged. into the user port of the 84\123. The
software when loaded will display a control menu. &
The various sections are connected with the different aspects of
eprom porgramming i.e. reading, programming, verifying etc.

The command section is as follows:

T Selects eprom type Pressing this key will scan through . the
various chip sizes from 2716-27256. .

Selects programming speed. Prassing ths key will scan
through 3\5\50ms. The best speed to select is 5ms though 3ms
can be used for faster burn. ' However 3ms may give unreliable
results .on some brands. It should be noted that old 2716 +
2732 devices can only be programmed at 50ms. For this reason
50ms is automatically set when these chips are selected.

Selects programming voltage. Pressing this key will scan
" through the various voltages 12.5\21\25 volts. When you
select chip type the voltage will set to the most popular for
this device. Always check that your device is suitable for
t!:u.s setting and change accordingly. !

- Selects 1\0 status. Pressing this key will togdle between
RAM\ROM. The purpose of this setting is to select whether to
read frmn the ROM or from the RAM under the ROM. {

Selects program range. Pressing this key will togd].e batwom
all of the chip or a range/ section of the device. If rande
is selected then the parameters for the ranza should be sat
(see below).

Displ-ays disk directory.

Loads a file from disk.

Send a disk command.

Save a file to disk.

Enter monitor (See mon comma.nds)
- Exit program.

Fills memory m.th one byte.

Checks for blank eprom.

Will erase an E.Eprom.

Verify an eprom against ram.

Read an eprom into ram.

Write an eprom.

> EIOCHAPEXINECS

Allows you to set the range. The current range is displayed
at the bottom left of the screen. Pressing A will allow you
to change these parameters. The cursor will flash alongside
the current setting and you can enter the new value then
RETURN. Pressing JUST RETURN will accept the current value.
The various values are as follows:

RAMSTART This is the start location in computer ram where This is perhaps a complicated example but it does cover most

the file you are going to program into an eprom : aspecls of programming.
begins.
If you wanted to read an epr int tl
EPROMSTART This is the start location in the eprom to be 3 same. PROm o ovaE Lhe Jules: poe ok “the
programmed i.e. 0000 would program the chip from
the start. 2000 would program from 8k upwards in MONITOR:
the chip. ' When a program is in ram then changes can be made with the inbuilt

o : ? monitor. Press ‘M’ to enter wh th :
TASK LENGTH This value sets how much of the chip is to be _ e k) e aie
programmed. i.e. an eprom start address of 0000 ./ M XKXXX XXXX Will display as hex and ii ¢

and a task length of 2000 would program that chip v/ : addresses XXXX-XXXX e s godsibetysel the! tio
in the first Bk of the device.

v/ D XXXX XXXX Will display disassembly between the two.addresses.

RAM END This value will change when ramstart and task
length are set. g G XXXX Will execute from that address.
EPROM END This value will change when epromstart and -task TH XXXX XXXX *% Will find the value ’*%’ between the two aﬁdressas

length are reset.

i : C XXXX XXXXX Will compare between the t
So you can see that any part or all of a chip can be programmed at : g, 7 e e,

one time. For instance if you wanted to program a replacement X : Will exit monitor.
kernal chip for your 84 you would need a 16k chip to hold the old

8k system plus the new B8k system. An example of programming this

task would look something like this:-

Press 'T’ and select 27128 (18k). Now select the correct voltage.
Because we want to copy the old operating kernal system from the
chip inside the computer we would press ’'*’ to select ROM. We are
going to ’burn’ the chip in two halves so we press 'Q’ and select

RANGE.

We will now press ’A’ to alter the range parameters. Since we are

going to copy the kernal rom we set RAMSTART to E000.. This means

that we will extract the code from the kernal at EO00 as the !

source for our programming. Now set EPROMSTART to 0000 because we
are going to put the old kernal code into the bottom half of our
new chip. Now we turn to TASK LENGTH. This we set to 2000 (8k).
Thats it the parameters are set, we can now select W’ .and write

the eprom. The screen will show the ‘burn’ as it progresses.
Afterwards press 'V’ to verify the contents of the new chip
against the source (in our case the kernal). Next we move to the
kernal code. We select ’L’ and load our new file from disk. It
will load into the RAM under the kernal or indeed any other free l
8K space in ram. The eprom size and speed are unchanged but we
press ’%’ to select ’'RAM’. Next we move to 'A’ to alter the

parameters. If the new file has been loaded E000 then we set
RAMSTART +to EO0O0O. Remember that we could have loaded this file !
into.any free 8K block and so a different RAMSTART value would be
entered. ;

The value for EPROMSTART should now be changed to 2000. This is
because we now want to program the top half of the 16K chip. TASK
LENGTH is unchanged since our new file is also BK.

Again we got to 'W’' to write the chip 'V’ to verify.

ZIF
SKT

EPROM BOARD

Oo0o0o000000ooooag

[A o)

|
DFDDHDDDDDDDDD

24 PIN EPROMS 271672732

28 PIN EPROMS 27647128/ 256

z

CARTRIDGE DEVELDPMENT SYSTEM. INSTRUCTIONS.

HEERE AR TR R ERFFRFFRRREERREER HERERFBRERERREE

The cartridge development system is a complete kit of parts to build an
Bk or a 2x Bk switchable cartridge.

In its simplest form the board can be formatted as an Bk cartridge to
appear in memory at $B000-9FFF, $AO0D-BFFF or even replace the kernal at
$EOOO-FFFF.

By looking at the circuit diagram you will see that fitting the wire link
will ground the EXROM line and hence the cartridge will appear at $8000.
ROML is already connected to the chip enable. If in addition the PAD1 link
is made then GAME will also be grounded and the cartridge will then appear
at $A0O00 but this time enabled by ROMH (pad4). A second eprom could be
incorporated using this method and a 16k cartridge be built.

The eprom provided is a 27128 1gkdevice but our board really treats it

as two Bk devices. When the board has been configured as a simple Bk
cartridge (where ever in memory) the switch can be used to introduce either
the bottom or top half of the chip. Thus two completely different Bk programs
can be switched in at will.

We have tried to make the board as versatile as possible both for you

and ourselves since we base most of our own products on this board.

Further examination of the circuit diagram will show that many more methods
of configuration are catered for. For instance both the Game and EXROM
lines can be connected to the I/01 and I/02 lines. These lines are under
software control and therefore a cartridge can be controlled by software.

The Epyx Fastload cartridge uses the I/0 lines to make itself invisible
to the system.

Please read the booklet carefully and all will be revealed. The .above
information is only an overview of the options available for this product.
The rest of this booklet will deal with the various control lines to
configure the system. Much of the information is not readilly available
elsewhere, indeed Commodore themselves treat this subject as though it
was some sort of secret.

When you have read the rest of the instructions you will appreciate that
it not that complicated to achieve great things. On the other hand if you
find it difficult just read through it again and we are sure you will
pick it up. We have made it as concise as possible and it is an area that
is well worth understanding.

Please be carefull when programming =-the-: Eprom and remember that if
you are going to use it as two Bk s then set your programmer as such.

An attractive case is supplied to finish off your cartridge. This unit
is ready drilled for the bank switch and reset button also provided.

If you come up with a good product that you may consider is worth putting
into production then Datel will be pleased to quote for supply of cartridge
kits in quantity.

Alternatively if it is really good why not send it for evaluation and we
may be interested in marketing it for you.

HARDWARE CONTROL OF THE PLA

The memory that the microprocessor sees may also be controlled by
hardware. Hardware control requires an actual connection from the
pins on the cartridge port to ground. Two of the lines connected
from the PLA to the cartridge port will control memory
configuration. The PLA will monitor the voltage 1level of these
two lines. These two lines are called the EXROM line and the GAME
line. These two lines are normally high (+5v). When either (or
both) of these lines are grounded the PLA will reconfigure the
memory that the microprocessor sees.

Grounding only the EXROM line will cause the PLA to reconfigure
memory so that the microprocessor will look to the cartridge port
to find the memory from $8000-$9FFF. All1 of the other memory
locations will remain intact. BASIC ROM, KERNAL ROM and the 1I/0
devices will remain in effect. Under normal circumstances the
EXROM 1ine would be grounded only if a cartridge had been
installed. If we were to ground the EXROM 1line without a
cartridge installed the microprocessor would not find any memory
at these locations ($8000-$9FFF). The PLA does not care if any
memory exists at the memory locations that the microprocessor is
looking at. If we ground the EXROM line without plugging in a
cartridge, the PLA will prevent the microprocessor from _seeing
any memory other than what is at the cartridge port (nothing in
this example). The microprocessor will only find random garbage
in this area. This 1is a way for the PLA to prevent the
microprocessor from seeing the RAM normally at $8000-$9FFF.
REMEMBER THAT WHEN THE EXROM LINE IS GROUNDED THE PLA WILL CAUSE
THE MICROPROCESSOR TO SEE ONLY THAT MEMORY THAT IS PLUGGED INTO
THE CARTRIDGE PORT. THIS WILL OCCUR WHETHER THERE IS A CARTRIDGE
PLUGGED IN OR NOT!

Grounding only the GAME line will cause the PLA to reconfigure
memory so that the computer will be able to use cartridges
designed for the "ULTIMAX" system. The KERNAL ROM and the BASIC
ROM will be switched out and the microprocessor will look to the
cartridge port for memory in the $8000-$9FFF and the $E000-$FFFF
‘range. This configuration of memory will cause the microprocessor
not to see ANY memory in the following areas of memory;
$1000-$7FFF and $A000-$CFFF ('images' may appear in these open
areas). Memory locations $0000-30FFF will appear as the normal
RAM and $D000-$DFFF will appear as the normal 1I/0 devices. The
microprocessor will look for memory 1locations $8000-$9FFF and
$EO00-$FFFF on the cartridge port. Again, this memory
configuration is only for those cartridges that emulate the
ULTIMAX system.

Grounding BOTH the EXROM and the GAME lines at the same time will
cause the PLA to reconfigure memory so that the microprocessor
will 1look to the cartridge port for memory at Tlocations
$8000-$BFFF. This configuration will allow the use of 16K of
continuous cartridge memory. 8K will reside in the normal area of
cartridge memory (gBOOO-SQFFFl. The other 8K will reside in the
area of memory that is normally reserved by BASIC ($A000-$BFFF).

EPROM HANDBOOK : PAGE 2.

This memory configuration will also allow for the programmer to
switch between the RAM and ROM 1located at memory locations
$8000-$9FFF. By controlling the LORAM 1line the programmer may
select RAM or cartridge ROM. When the LORAM line is high the PLA
will cause the microprocessor to see ROM at location $8000-$9FFF.
When the LORAM line is low the PLA will cause the microprocessor
to see RAM at locations $8000-$9FFF and the microprocessor will
still see the cartridge ROM Tlocated at $A000-$BFFF. In other
words, trying to turn off the BASIC ROM with LORAM when GAME and
EXROM are both grounded will turn off the cartridge memory at
$8000-9FFF but will not turn off cartridge memory at $A000-BFFF!

We have now covered the major functions of the PLA and
microprocessor combination used in the C-64 as they relate to
memory management. The PLA also has a few other important
functions. When the microprocessor writes to an area of memory
that contains both RAM and ROM (BASIC ROM $A000-$BFFF, for

example) the PLA will allow the microprocessor to write to the"

underlying 'RAM. The PLA will decode: the microprocessor's
instructions when it is reading and writing. The PLA will then
"decide" what memory that the microprocessor should have access
to (RAM or ROM). If the microprocessor is going to write (STA) a
value in memory, the PLA will select the appropriate memory (ROM
cannot be written to). If the microprocessor will be reading
(LDA) a value from memory, the PLA will select the proper area of
memory based upon the LORAM, HIRAM, EXROM and GAME lines. The one
deviation from the preceding example is when the microprocessor
writes - to the memory at $D000-$DFFF. This memory normally
contains the I/0 devices, rather than RAM or ROM. Because of
this, the PLA will allow the microprocessor to both read and
write to these addresses. These address do not normally refer to
actual RAM/ROM memory locations used by the 6510. They primarily
contain the onboard registers of the I/0 devices and the color
RAM used by the VIC chip. The VIC (video) chip, the SID (sound)
chip, the CIA's (communication) chips and the color RAM are
located in this area of memory.

The VIC chip can also access (look at) memory. The VIC chip can
only address 16K of memory at any one time. The VIC chip also
causes the PLA to select what area of memory is available to the
VIC chip. For instance, when the VIC chip wants to access the
CHARACTER ROM, the PLA will select this chip rather than the 1I/0
devices normally located from $D000-$DFFF. For our purposes, we
have already covered all that we need to about the 6510
microprocessor and the PLA.

EPROM HANDBOOK : PAGE 3

N I ™ .

If you have a hard time digesting all the information presented
to gou in this chapter, DON'T WORRY ABOUT IT!!! A tremendous
amount of information has been presented here. Let's just review
a few of the more important concepts:

1. The 6510 microprocessor is RESET upon power up.

2. Whenever the microprecessor is RESET the LORAM, the HIRAM and
the CHAREN lines will be set high.

3. The PLA will control the microprocessor's access to various
areas of memory.

4. The PLA may be controlled by both hardware and software
methods.

5. B rounding the EXROM line we can prevent the microprocessor
yfgom seeigg RAM at locations $8000-$9FFF (very important).

6. A software RESET (SYS 64738 or JMP $FCE2) is different than a
hardware RESET.

‘m |:§ \24 |5

Py Py Py ULCAEC.
Po
Py
]
RES
Ars
Ayg
Ay
Az
Ay
A

i

b

&

3

=

= =] =i
l”l‘—-i“‘l“

FIG 6-1 6510A

] ot o]) -
.l ..H_l ..l..l.

-

1

=

]

-

g

B

|

33i2ss09509092222222222
8

»lu

GND

-—-—h‘——-——

EPROM HANDBOOK THE 6510 AND THE PLA PAGE 4

CARTRIDGES AND CARTRIDGE BOARDS

There are two main ways to use an EPROM
computer system. You can use the EPROM on a plug-in cartridge
board, or you can use it to directly replace one of the ROM chips
in the computer or drive. We'll cover both of these topics, but
let's concentrate on cartridges for now. There are several
different kinds of cartridges for the (-64, including exotic
cartridges used in some commercial products. To understand the
differences among cartridges, we need to look at how cartridges
are recognized and accessed by the computer. Before proceeding,
be sure you have read the chapter on memory management. In that
chapter we looked at the PLA and its relationship with the rest

of the computer. In this chapter we'll look at how cartridges
interact with the PLA.

in your Commodore

The simplest type of cartridge is the 8K cartridge. Actually, you
could put LESS than 8K of EPROM on this type of cartridge, but 8K
is the maximum, so we'll loosely call it the standard 8K
cartridge. A single 2764 EPROM (8K) is usually wused in these
cartridges (commercial cartridges may use PROMs dinstead). When
this type of cartridge is plugged into the computer, the EPROM
will be "seen" by the computer at memory address $8000-9FFF. The
RAM which is normally there will “disappear". 0f course, you'll
get your RAM back when you unplug your cartridge. In fact, the
contents of the RAM will be unchanged. (By the way, NEVER plug or
unnlug a cartridge when the computer power is on, unless you have

a cartridge power switch. Doing so could destroy your computer
and cartridge!)

The second type of cartridge can hold up to 16K of memory, So
we'll call it the standard 16K cartridge. Two 2764 EPROMs usually
supply the 16K. The first EPROM will appear in memory at
$8000-9FFF, replacing the normal RAM there. The second EPROM will
appear at $A000-BFFF, knocking out the BASIC ROM which is usually
located there. This gives us 16K of continuous cartridge memory
from $8000 to $BFFF. If you recall that the BASIC ROM is already
"sitting" on top of 8K of RAM, you can appreciate how much is
going on behind the scenes to keep all this straight.

The third type of cartridge is called an ULTIMAX
cartridge., ULTIMAX was a video game system produced by Commodore
and sold only in Europe, and only for a short while. It used the
same VIC II and SID chips as the C-64. The designers of the C-64

arranged it so that cartridges for the MAX would work on the C-64
too. On the C-64, MAX cartridges replace the KERNAL ROM 1located
at $E000-FFFF with

their own 8K of EPROM. MAX cartridges may also
have another 8K of ROM memory if desired, which will appear at
$3000-9FFF. One special feature of MAX cartridges is that all of
the RAM of the computer disappears except for 4K at $0000-OFFF.
Because we can't access most of the RAM, MAX cartridges really
aren't useable in very many applications.

or Jjust MAX

EPROM ROOK PAGE 5

We just said that the EPROMs in these cartridges ‘'replace’
different areas of memory. This is really only true for read
operations. Write operations will vary in their effect depending
on the type of cartridge. For example, with an 8K cartridge
plugged in, the computer will be able to read the cartridge EPROM
at $8000. If the computer tries to write to this 1location,
however, the data will end up in the RAM "under" the cartridge.
Likewise, with 16K cartridges write operations go to RAM
automatically, even though the second EPROM at $A000-BFFF is two
levels removed from RAM (the BASIC ROM is sandwiched in between
che EPROM and RAM). With MAX cartridges, however, the RAM is
truly "gone". Writing has NO effect on any area of RAM except
the $0000-0FFF area. :

How do the cartridge EPROMs and RAM chips know when to respond
and when not to? Why does a read operation go to EPROM and a
write operation go to RAM? We saw in a previous chapter that the
C-64's PLA chip is 1in charge of memory management. In this
chapter we'll see how the cartridge controls the PLA to produce
these effects. At the same time, we'll address a related topic -
what makes the three types of cartridges different? Why do the
cartridge EPROMs appear at the locations they do?

The answers to these questions lie in the EPROM's enable Tlines.
In order for a chip to be active, it must have a supply of power,
first of all. It must also have address and data lines to
communicate to the outside world. Most chips also have at least
one enable 1line.Most of the EPROMS discussed in this book
actually have two enable lines, called the chip enable (CE) and
output enable (OE) lines. Both have to be controlled correctly in
order to access the chip. An enable line is like a switch. The
chip enable (CE) is a power switch. Even if power is available,
the chip will not become active until the CE line is brought 1low
(grounded; set to 0 volts). The abbreviation CE i usually
written with a bar over it to indicate that the CE line performs
its function only when it is brought low (this is called active
lTow). When CE is held high (+5 wvolts), the chip 1is put dnto
“standby" mode. In this mode the chip uses much less power than
when active. A certain minimum amount of power is used in standby
mode to keep the chip "warmed up". EPROMs don't require ANY power
just to retain their data.

The other enable line, output enable (0E), controls the chip's
data lines. OE is usually written with a bar over it too, since
the chip will only put out data when the OE line is low. In order
for the chip to be active, both OE and CE have to set low at the
same time. On C-64 cartridges, the two enable lines from the chip
are combined into a single line to make enabling the chip easier.
The chip can be enabled by switching this one combined 1ine high
or low. Cartridges with two chips on board have a separate enable
line for each chip. Each enable line is a combination of the OE
and CE lines from one chip. From now on when we speak of THE
enable line for a chip, we'll be referring to the combination of
CE and OE.

EPROM BOOK PAGE &

Enable lines are used when several chips are connected to the
same set of address and data lines. If more than one chip were
active at the same time, there would be mass confusion (bus
conflict) and possibly even physical damage to the chips. By
controlling the enable 1ines, you can make sure only one chip at
a time will be active on the address and data 1lines. Does this
situation sound familiar? Of course - it's exactly the situation
we have in the C-64 when we plug in a cartridge, since we could
have EPROM, ROM and RAM potentially residing at the same address!
Now we see that there is really a simple principal underlying the
complexity of memory management. The PLA chip, 1in 1its infinite
wisdom, knows which chip enable 1ine to switch on, depending on
what type of cartridge (if any) is plugged 1in and whether the
operation is a read or a write. Remember, write operations are
usually directed to RAM, except when writing to the I/0 devices
at $D000-DFFF. Read operations have to be sorted out and directed
to the proper chip (EPROM, ROM or RAM). :

The PLA has many lines coming into it (inputs) that it uses to
sense the present state of the computer. It also has several
lines coming out of it (outputs) that are used to control the
memory chips. The PLA monitors its input lines continuously. Any
changes in the input lines affect the output 1lines immediately.
One input line called R/W is used to distinguish between read and
write operations. Write operations are ‘"easily" handled since
they almost always go to RAM, so we'll concentrate on read
operations. 0f all the PLA's lines, we only need to be concerned
about four right now: two input lines, GAME and EXROM; and two
output lines, ROML and ROMH. The function of the GAME and EXROM
lines is affected by other input lines, such as HIRAM and LORAM,
but for this discussion we'll assume that HIRAM and LORAM are
both held in their normal state (high). ;

GAME and EXROM are inputs to the PLA from the cartridge port.
They are not connected to anything else in the C-64. GAME is pin
#8 on the cartridge port. On a cartridge BOARD, this is the 8th
pin from the left on the top side of the board (the component
side, where the EPROMs are mounted). See the diagram in appendix
D. EXROM is pin #9, right next to GAME. Both are active low, that
is, when grounded (0 volts). With no cartridge plugged in, these
lines are automatically held high (+5 vo]ts?. It's up to the
cartridge to ground these lines or not, according to the memory
configuration it wants the PLA to set up. In a nutshell, this is
how the PLA knows what type of cartridge is connected. If EXROM
alone is grounded, it indicates an 8K cartridge (regardless of
how many EPROMs are actually on the board, as we'll see). If both
EXROM and GAME are grounded, it indicates a 16K cartridge.
Finally, if just the GAME line is 'grounded, it indicates a MAX
cartridge (either 8K or 16K). Grounding a line is as simple as it
sounds - just connect it to the computer's ground. Pins 1, 22, A
and Z on the cartridge port are all grounds.

EPROM BOOK . PAGE 7

A bank-switched cartridge looks like a standard 8K cartridge to
the C-64. The cartridge will ground only the EXROM line, so the
PLA thinks the cartridge contains 8K of memory at $8000-9FFF.
This is accurate as far as it goes: only 8K of cartridge memory
will be available at a time, and it will appear at $8000.
However, the cartridge board may contain any number of EPROMs.
Special circuitry on-board the cartridge picks out one EPROM at a
time to appear at $8000. Accessing this memory is a two-stage
crocess: the PLA brings the ROML enable line 1low and then the

rtridge bank-switch circuitry passes this enable signal to its

irrently selected EPROM. The C-64 doesn't know about the second
stage, of course; it just sees a standard 8K cartridge. The only
time the C-64 has to do anything special is when it wants the
board to change the current EPROM.

To tell the board to change the current EPROM, we have to send a
special signal to the board. We can't use the regular address,
data or enable lines for this, however. Instead, most bank-switch
cartridges use a special line, not normally wused for anything
else on the C-64 (except the Z80 CP/M cartridge). There are
actually two of these lines to choose from, called I/01 and I/02.
I/01 is set low whenever a read OR write operation accesses the
$DEOO-DEFF area (note that the ROML and ROMH lines are set low
only on read operations). 1/02 is similiar except it's triggered
by references to the $DF00-DFFF area. I/01 and 1/02 are pins
and 10 on the cartridge port, respectively. On a bank-switch
board, one of these lines will be connected to a special piece of
circuitry called the bank-select register (BSR). Depending on
whether I/01 or 1/02 is used, the BSR will appear at $DEOO or
$DFO0 in memory. To switch the current EPROM all you have to do
is trigger the BSR, usually by writing a particular value to it.
That's all there is to it. Once you trigger the BSR, the EPROM
selected will appear at $8000 immediately.

Bank-switch cartridges are especially useful for programs which
are too large to fit in 16K (the maximum for a regular-type
cartridge). Bank-switching can also provide considerable
protection for a program, depending on how it is used. There are
two main ways a cartridge can use bank-switching. The simplest
way is to just download the program from the EPROMs into RAM
memory, one 8K chunk at a time. After downloading, many
cartridges can remove themselves from memory by "ungrounding” the
EXROM line via special circuitry. This frees up the RAM at $8000
(under the cartridge) for use by the program. The simple download
method is relatively easy to set up but doesn't offer much
protection for the program. A second way to use bank-switching is
to have different sections of the program on different EPROMs.
Depending on which part of the code is needed, the board can
select the proper EPROM. The code is never downloaded 1into RAM,
but rather executed directly on the EPROM. This is much more
complicated for the programmer to set up, but it is also a very
solid program protection technique. To make a RAM executable copy
from such a cartridge, if it could be done at all, the code would
have to be modified extensively.

EPROM BOOK PAGE - g

pprv———

Okay, so GAME and EXROM tell the PLA what's going on. What does
the PLA do about it? This brings us to the PLA output lines ROML
(ROM Low) and ROMH (ROM High). ROML and ROMH are connected only
to the cartridge port. They are both normally held high (+5v)
unless a cartridge grounds EXROM or GAME (or both). Depending on
which of these lines are grounded, the PLA will bring ROML and/or
ROMH low too. What are ROMH and ROML? Nothing more than two EPROM
enable lines! ROML is the combined OE/CE enable 1line for the
first cartridge EPROM, located at $8000-9FFF in memory. MWith a
cartridge (any type) plugged in, the PLA will bring ROML low any
time a read operation tries to access the $8000-9FFF area.
Remember, bringing an enable line low will activate the chip.
ROML is not held Tow all the time, since then the chip would be
active even when other areas of memory were being accessed
(resulting in bus conflict). ROML is only held 1low momentarily
until the read operation can be performed. This is how the PLA
'tells' the EPROM it is located at $8000 - the PLA only enables
the EPROM when that area of memory is being accessed.

The ROMH enable line is just a 1ittle more complicated because

the second EPROM appears at different locations in memory with
different types of cartridges. With a standard 8K cartridge
(EXROM grounded), the second EPROM 1is not used and so it's
disabled by holding ROMH high at all times. With a standard 16K
cartridge (both GAME and EXROM grounded), any read operations in
the $A000-BFFF area will signal the PLA to bring ROMH low. Since
POMH is connected to the second EPROM's enable lines, this will
make the EPROM appear at $A000 in memory. With a MAX cartridge
(GAME grounded), read operations 1in the $EODO-FFFF area will
enable the second EPROM through ROMH and make it appear at $E000.
Note that with a MAX cartridge, you MUST have an EPROM at
$E00D-FFFF since the microprocessor automatically looks there on
reset, The $8000-9FFF EPROM is optional with MAX cartridges (and
in fact, rarely if ever used).

At this point a 1ittle review is in order. The GAME and EXROM
lines run from the cartridge to the PLA. They tell the PLA what
type of memory configuration to set up. Based on the memory
configuration, the PLA enables the cartridge EPROMs at the proper
times using ROML and ROMH. Cartridge EPROMs are only enabled for
read operations, never write operations. A cartridge EPROM is
only enabled when its particular area of memory is referenced.
The PLA controls which area of memory is assigned to the
cartridge EPROMs, depending on the state of the GAME and EXROM
lines. The PLA monitors the GAME and EXROM lines continuously.

The cartridge types we've examined so far by no means exhaust the
possibilities. By manipulating the GAME, EXROM and other 1lines,
many exotic cartridges can be created. The most common example of
an exotic cartridge is a bank-switch cartridge. "Bank-switching"
means turning memory chips on and off, so different chips can
occupy the same addresses at different times. Sound familiar? The
C-64 already uses bank-switching, controlled by the PLA, to
select its different memory configurations. What's different
about bank-switched cartridges is that the bank-switching is done
on-board the cartridge itself, 1in addition to the memory
selection done by the PLA.

EPROM BOOK : PAGE 9

AUTOSTART CARTRIDGES

Suppose you wish to set up a cartridge that runs automatically
when the computer is powered up or RESET. To do this you'll Hhave
to interrupt the normal power-up (RESET) process somehow, and
force the computer to execute your cartridge program. Depending
on where you interrupt the normal process, however, your program
may have to initialize some areas of the computer for proper
operation. For instance, it may have to initialize the 6510, VIC
or CIA chips, or the KERNAL or BASIC RAM areas. Thus it's
important to know what initialization is done normally, when it's
done and why. In this chapter we'll examine the various ways to
interrupt the RESET process and autostart a cartridge, including
the necessary initialization tasks.

There are three main methods you can use to autostart a
cartridge. Each method involves interrupting the RESET process at
1 different point, and each method is best suited to a different
vind of cartridge. We'll start with the easiest method first,
shich we call the $A000 method (you'l11l see why in a minute). The
RESET process -can be divided into two phases, KERNAL
jnitialization and BASIC initialization. BASIC initialization Iis
only necessary if your cartridge must be compatible with the
BASIC system., For example, if your cartridge adds commands to the
BASIC lanauace or uses certain BASIC ROM subroutines, you'll need
to initialize BASIC.

$A0CD METHOD

1f you don't need the BASIC system, you can "trick" the KERNAL
RESET process into doing all your initialization for you and then
autcstarting your cartridge. After completing its own
ijnitialization tasks, the KERNAL RESET routine attempts to
“"cold-start” (initialize) BASIC. It does this by jumping to the
location specified by the BASIC COLD-START VECTOR. Like all
vectors, the BASIC cold-start vector consists of two consecutive
bvtes containing a memory address. The address 1is -stored in
lo-byte / hi-bvte order, which means the 1low order (least
significant) byte is first and the high order (most significant)
byte is second. The KERMAL expects the BASIC cold-start vector to
be found in locations $A000-01, which is normally at the very
baginning of the BASIC ROM. The contents of these two locations
in the BASIC ROM are $94 and $E3 respectively, which means they
"point" to location $E394 (vectors are also called pointers).
This location is the start of the BASIC cold-start routine.

If we could change the BASIC cold-start vector, we could make it
noint to our cartridge program. Our cartridge would start wup
automatically after all KERNAL initialization was finished. But
since this vector is in the BASIC ROM, how do we change it?
Answer: replace the BASIC ROM. Mot physically, of course, but by
using a standard 16K cartridge. Recall that standard 16K
cartridges reside at $8000-BFFF. The PLA switches out the BASIC

EPROM HARDBOOK PAGE 10

ROM and selects the 16K cartridge configuration when it senses
that both of the GAME and EXROM lines are grounded. Two 8K EPROMS
are required for 16K of memory onsthe cartridge. The first EPROM
resides at $8000-9FFF and the second EPROM resides at $A000-BFFF.
A11 you have to do is put a vector at $A000-01 which points to
the beginning of your program, and the cartridge will be started
automatically at the end of KERNAL initialization.

If you only need 8K for your cartridge, you can still use this
technique. Just use the second EPROM ($A000-BFFF) and leave the
first EPROM ($8000-9FFF) socket empty. As long as GAME and EXROM
are grounded, the PLA will still choose the 16K configuration.
This means the RAM normally at $8000-9FFF will still be switched
out, however (and the BASIC ROM too, of course). Since you're not
using the first cartridge EPROM, you'll have a "hole" 1in memory
from $8000-9FFF. If you try to read from this area, random data
may appear there. You may even be able to use this phenomena as
part of a protection scheme. As usual, data written to this area
will be placed in the underlying RAM, even though you can't read
it back out.

So, to review a bit, the $A000 method is the easiest autostart
technique to use because all KERNAL initialization is done for
you. You don't have to worry about BASIC initialization since you
can't use BASIC anyway (the BASIC ROM is switched out). Of
course, you don't have access to the BASIC ROM subroutines either
(there's a lot of useful stuff in there). This makes the $A000
method most suitable for cases where you need the maximum 16K of
cartridge memory, or where you only need 8K and don't need BASIC.

CBM80 METHOD

The second cartridge autostart method is by far the most common.
It can be used by both 8Kk and 16K cartridges that reside at
$8000. Although this method is sometimes called the “cartridge
autostart option", it can - be used equally well by RAM-based
programs, and often is. You probably know it as the "CBM80O"
method. One of the first things the KERNAL RESET routine does is
check locations $8004-08 for the string of characters "CBM80". If
these exact characters are NOT found there, the KERNAL RESET
process continues normally.

If the "CBM80" IS found, the RESET routine is interrupted and the
processor immediately jumps to whatever location is specified by
the CARTRIDGE COLD-START VECTOR. This vector is expected to be
found at locations $8000-01. You must place a pointer here, in
standard lo-byte / hi-byte order, directing the processor to the
beginning of your cartridge code. From that point on, your
cartridge must handle all the initialization itself ‘for any
functions it will use, such as the I/0 devices or KERNAL or BASIC
routines. Fortunately, you still have the KERNAL initialization
routines available for use. Unless you know exactly what you are
doing, your cartridge should use these routines to initialize the
functions it needs.

EPROM HANDBOOK PAGE 1\

Figure 8-1 presents a "generic" cartridge initialization routine.

This routine duplicates most of the normal RESET process. In To summari .
fact, it's taken right from the main parts of the KERNAL standarrngr §§Ft??§g§§M8?uﬁ?§:°ds§§2tbea¥segagag? E1¥:er ST,
($FCEF-FE) and BASIC ($£394-9F) RESET routines. This generic initialization routine above will be sufficient fe cartridge
routine will be adequate for 99% of all cartridges. majority of cartridges. KERNAL initialization e;ust o;e tggnevagi

least once (on power-up or RESET). BASIC diniti i
: 0 . alization
skipped if you're not using BASIC, and MUST be skipped if c;gu'E:

Figure 8]f CBM80 Cartridge Initialization ::;ngEgTégE Eartr1dg§. Through the cartridge warm-start vector,
8000 09 80 Cartridge cold-start vector = $8009 be disabled eﬁiiﬁg? ET;Etcgﬂ Yo re-enter your program or it can
8002 25 80 " " " warm " " " " = 8025 Cal‘tridge autustartyr;]ethsd 80 method is by far the most common
8004 €3 C2 CD 38 30 CBM80 - Autostart key E
A KERNAL RESET Routine : MAX METHOD
8009 B8E 16 DO STX $D016 Turn on or 4 chec OITERET o7
800C 20 A3 FD JSR $FDA3 IOINIT - Init CIA chips , The th
800F 20 50 FD JSR $FD50 RAMTAS - Clear/test system RAM requfrl;dtﬁgdu;:sgfagﬁoﬁf%;ﬁnmethgd- s the “MAX ‘method, This
8012 20 15 FD JSR $FD15 RESTOR - Init KERNAL RAM vectors the BANE' 13he). ' The>Second EPRON ridge (one that grounds just
8015 20 5B FF JSR $FF5B CINT - Init VIC and screen editor , SE000-FFFF, replacing the KERNAL in a MAX cartridge resides at
8018 58 CLI Re-enable IRQ interrupts $8000-9FFF "1f used) . MA AL ROM (the first EPROM appears at
) Fiielb (2ed s i X cartridges have many limitations and are
' BASIC RESET Routine limitZticn ogonggrg allyd except for simple video games. One
8019 20 53 E4 JSR $E453 Tn vectors RABCAS Avaiiihle’ forngsag as 0. vhat o1y, WL Cer Ehe., compUtet, s
801C 20 BF E3 JSR SE3BF Main BASIC RAM init routine SEPken Menohy® AacThOBRI e TRty Ehel oot ot peopRduaTod, £Or
801F 20 22 E4 JSR $E422 Power-up message / NEW command Switehedroff, which meahs Jo0 mibt WAL stur By raoaret RpNe . Js
8022 Az FB LDX #3$FB : initialization roﬁtiﬂg:n? ¥$ﬁ mu:t g e LR LU L L 30
8024 9A XS Reduce stack pointer for BASIC a5 aiguiide). Hol LTI deodiin Mery banaut Racta s faNtk routines
3 A : nitialization
8025 +en.eees eeesesses START YOUR PROGRAM HERE since the BASIC ROM is switched out too. For these reasons,
you'll probably never need to set up a MAX cartridge. Only an
advanced user would want to consider using this method.
The cartridge cold-start vector and autostart key (CBM80) have MAX : 4
already beeg discussed. The warm-start vector at $8002-03 is a procg::§:1gg:ﬁeiu:ﬁ::a:ﬁr;hFEUQh afhardware function of the 6510
feature that allows you to re-enter your program after a full 1 ket e GERER Bwo methodsug Hﬁ software routine in the KERNAL
initialization has already been done. Once a cold-start has been special circuit RESETs the 65?3 the C-64 1is powered up, a
done, it usually doesn't need to be done again. Pressing the chips, just as if you had perf dm1croprocessor. SID and CIA
RESTORE key calls the NMI routine (NON-MASKABLE INTERRUPT), which RESETSBULTON) .- Twor Wohi MGt hball Vb S o s Sl s
will see the CBM80 and jump to the location indicated bt the before any 1n;tructionz argo ant events take place immediately,
warm-start vector. This is why many programs restart themselves : bYRC: ,$1D3 GTAs apd golen RAN Enrexeﬁutegé Féggt, the I/0 devices
when you press the RESTORE key. In our initialization routine we .’ a3 we1l as the KERRAL and BhS1d Bﬂﬁs ?narm%11§?T°E%c02% EE%
have pointed the warm-start vector to the start of your progranm; 6510 processor fetches its RESET vector from locations $FFFC-FD
you could also point it to $8009 to perform a full cold-start on normally in the KERNAL ROM. The RESET vector is a two-byte value
RESTORE. If you want to disable the RESTORE key entirely, point ; that points to the beginning of the KERNAL RESET routine. The
the warm-start vector to $FEBC (return from NMI). g;ggegggzuﬁtﬂ?YS“%etz its EESET vector from locations $FFFC-FD
s "hard-wire into the 6510 ip i d
We have included the BASIC RESET process in this cartridge CANNOT be changed! You must make sure the procegg;g f;gsglz’va?gg
initialization routine too., Actually, the normal BASIC RESET address in locations $FFFC-FD, which is why the KERNAL is
routine dead-ends with a jump to the BASIC direct mode normally switched in first on RESET. The processor does an
internreter, also known as "READY" mode. This prints the "READY." indirect jump based on the RESET vector and normally begins
promnt and then sits there waiting for you to type a BASIC executing the KERNAL RESET routine.

command. You won't usually want to exit intoc READY mode at this
point since BASIC will take over and your cartridge will Tlose
control. If you do want to exit to BASIC now or later, you may do
so with JMP $E386. By the way, the routine called at $801F (JSR
$E422) prints the normal power-up screen and does a NEW command.
If you want to skip the power-up message, just call the NEW
command directly using JSR $A644 instead of JSR $E422.

EPROM HANDBOOK PAGE 12 :
; EPROM HANDBOOK PAGE 13

The only alternative to executing the KERNAL RESET routine is if
a MAX cartridge 1is present. If the PLA senses that a MAX
cartridge is plugged in (GAME l1ine grounded), it switches in the
cartridge at $E000-FFFF, replacing the KERNAL. Then when the 6510
fetches its RESET vector from $FFFC-FD, it will get it from the
cartridge instead of the KERNAL. You simply place a vector at
$FFFC-FD pointing to the beginning of your RESET routine, and the
processor will start executing your routine automatically. This
is how the MAX autostart method works - your cartridge is
switched in and grabs control right from the start.

Now it's wup to your cartridge to perform all necessary
initialization. For instance, the VIC chip must be initialized in
order to use the screen. Likewise, other I/0 devices will have to
be initialized if you want to use the keyboard, the joysticks,
the sound chip, IRQ interrupts, etc. Initializing and controlling
these devices can be quite complicated. We recommend that you use
the corresponding KERNAL routines as a model for your own
routines. In fact, many MAX cartridges contain almost
byte-for-byte copies of KERNAL routines. While we can't cover the
KERNAL routines in depth in this book, we can summarize the
various initialization routines used in the normal RESET process.
This will help get you started towards an understanding of what
initialization your cartridge will require.

NORMAL RESET PROCESS

Recall that when the 6510 processor is RESET, it begins executing
at the address specified by the RESET vector at $FFFC-FD. In the
KERNAL ROM, these locations contain a pointer to the KERNAL RESET
routine at $FCE2 (decimal 64738). The main part of the KERNAL
RESET routine is shown in figure 8-2. Note the similarities to
our CBM80 cartridge initialization routine (fig. 8-1). The KERNAL
RESET routine takes three important steps right away. First, IRQ
interrupts are disabled with a SEI instruction, so the routine
won't be interrupted. Second, the stack pointer is initialized by
transferring a value to it from the X-register, wusing a TXS
instruction. The stack pointer indicates the next empty. position
on the stack, which grows DOWNWARD in memory from $01FF to $0100
(i.e. the pointer decreases as the stack is filled). The stack
pointer contains a random value on RESET, so we should put a
value here before any stack operations take place (i.e. a PHA,
PLA, PHP, PLP, JSR, RTS, RTI instruction or an NMI, IRQ or BRK
interrupt). The RESET routine sets the stack pointer to §FF,
which starts the stack out at the very top (allowing it the
maximum space).

The third step is to clear the decimal mode flag with a CLD
instruction. This flag controls whether math dinstructions 1like
ADC (add) and SBC (subtract) are performed in normal "hex" format
(actually binary) or in BCD format (BINARY CODED DECIMAL). Like
the stack pointer, this flag has a random value on power-up, so
it is set to 0 to ensure that math is done in hex format. If you
write your own initialization routine for a MAX cartridge you
should also do these three things right away.

EPROM HANDBOOK PAGE \4

Figure 8-2: KERNAL RESET ROUTINE

FCE2 A2 FF LDX #S$FF Stack pointer value

FCE4 78 SEI Disable IRQ interrupts
FCE5 B9A TXS Initialize stack pointer
FCE6 D8 CLD Clear decimal mode

FCE7 20 02 FD JSR $FDO2 Check for CBMB0 key
FCEA DO 03 BNE $FCEF Branch if not found

FCEC 6C 00 80 JMP ($8000) Jump to cartridge cold-start

FCEF 8E 16 DO STA $D016 Turn on VIC (Ag=$05)

FCF2 20 A3 FD JSR $FDA3 IOINIT - Init CIA chips

FCF5 20 50 FD JSR $FD50 RAMTAS - Clear/test system RAM
FCF8 20 15 FD JSR $FD15 RESTOR - Init KERNAL RAM vectors
FCFB 20 5B FF JSR $FF5B CINT - Init VIC and screen editor
FCFE 58 CLI Re-enable IRQ interrupts

FCFF 6c 00 AD JMP ($A000) Jump to BASIC cold-start ($E394)

After the first three steps, the RESET routine calls an important
subroutine at $FD02. This routine checks locations $8004-08 for
"CBM80" autostart key. If these exact characters are found there,
the cartridge cold-start vector is fetched from $8000-01.
Execution continues at whatever location is indicated by this
vector. This is the point at which the CBM80 autostart method
takes control.

If there is no "CBM80" found, the RESET process continues at

. $FCEF. The X register is stored into location $D016, which is the

VIC control register. The value of X at this point is always $05
or less, since it was used as an index in the check for "CBM80"
(which has 5 characters). Commodore says it's extremely important
to make sure bit number 5 of this value is a 0, which it 1is in
this case. A 0 in bit 5 supposedly turns the VIC chip on and a 1
turns it off (see p. 322 and p. 448 in the Prog. Ref. Guide). For
safety's sake your own initialization routine should set this bit
to 0 too. There's an interesting side-effect when values less
than $05 are stored in this register. In those cases, bit 3 will
also be a 0, which selects 38-column mode. That's why the - screen
"shrinks" when the computer goes through its normal RESET process
- bet you always wondered about that!

Next, the four main KERNAL initialization routines are called.
These are the same routines we called in our CBM80 initialization
routine. The first routine is IOINIT, located at $FDA3. This
routine can also be reached by jumping to $FF84 in the standard
KERNAL jump table. IOINIT initializes the CIA chips. It also
does some other minor initialization such as turning off the
SID's sound, switching in the BASIC and KERNAL ROMs (redundant on
a hard RESET) and sending a high clock signal ("1" bit) on the
serial bus. Next, the KERNAL routine RAMTAS at $FD50 1is called
($FF87 in the jump table). This routine clears and tests RAM.
First, the routine fills 1locations $0002-0101, $0200-02FF and
$0300-$03FF (pages 0, 2 & 3) with $00 bytes. This piece of code
is responsible for the cassette buffer, etc. being cleared on
RESET. Note that the stack is not cleared (except the bottom two

bytes).

EPROM HANDBOOK = . PAGE 15

After this, RAMTAS sets the cassette buffer pointer and then
begins testing RAM memory starting at $0400 (the screen). The
purpose of this test is to find the start of non-RAM memory,
i.e., to see if there is cartridge ROM at $8000. The test is
supposed to be "non-destructive® in that RAM memory is not
altered. First, the current contents of the location to be tested
are saved in the X-register. A $55 byte is stored into the
Tocation and then the location is read back to see if the $55 was
stored successfully. If the location now contains a $55 then it
is obviously in RAM - or is it? What if the location is in ROM
but happened to already contain a $55? To doublecheck this, the
process is repeated with the value $AA instead of $55. If it
passes both tests, the 1location is definitely 1in RAM.. The
original value saved in X is restored, and the test continues
with the next byte.

Eventually, the routine will run into ROM (either cartridge ROM
at $8000 or BASIC ROM at $A000). When ROM is encountered, a very
undesirable side-effect occurs. The $55 byte that is written out
goes into the RAM "under" the ROM, wiping out the value that was
there. This is important to remember when You 7are ‘trying to
recover a crashed program by resetting it. Once the start of ROM
is found, a routine at $FE25 (MEMTOP, Jjump table $FF99) is called
to set the top of system RAM to the beginning of ROM. The top of
system RAM is used in the calculation of the number of BASIC
bytes free. Finally, the bottom of system RAM is set to $0800,
agd the start of the screen is set to $0400 for the screen
editor. :

Back in the main RESET routine, a routine at $FD15 1is called
(RESTOR, jump table $FF8A). This routine copies the KERNAL's
indirect RAM vectors to $0314-33 from the table at $FD30-4F.
0ddly enough, it also copies this vector table into the RAM under
the KERNAL at $FD30-4F too! If you are trying to recover the
contents of the RAM under the KERNAL after a RESET, you should
remember this feature.

_The final KERNAL initialization routine is at $FF5B (CINT, jump

table $FF81). This routine initializes the VIC chip and screen
editor variables. The VIC chip 1is 1initialized by calling a
routine at $E5A0 which downloads a set of constants to the VIC
from $ECBY9-E6. This sets the border and background colors as well
as the raster interrupt register, used 1in the PAL/NTSC check
discussed below. The screen editor is initialized by a routine at
$E518. This sets the character color, keyboard decode table
vector, cursor blink and key repeat rates, and then clears the
screen. The CINT routine ends with the PAL/NTSC check. NTSC is
the North American TV standard and PAL is the International TV
standard. There are more lines on the screen with PAL. This fact
is used to detect which system you have, so the IRQ and RS-232
timing can be adjusted accordingly. The VIC raster {screen line)
interrupt was set earlier to occur on a line which doesn't exist
with NTSC. Later (at $FF63) the interrupt is checked to see if it
happened. If it did, we're on a PAL system, otherwise it's NTSC.
See the Prog. Ref. Guide pp. 150 & 447 for more information on
the raster interrupt register.

EPROM HANDBOOK PAGE \&

That's about it for the KERNAL RESET routine. IRQs were disabled
earlier, so they are re-enabled with a CLI instruction. Finally,
BASIC initialization is begun by Jjumping based on the BASIC
cold-start vector in the BASIC ROM at $A000-01. If a 16K standard
cartridge 1is present, however, its second EPROM will have
replaced the BASIC ROM in memory. In this case we must put a
vector at $A000 (in the second cartridge EPROM) to point to the
start of the cartridge program. This is the basis for the $A000
autostart method. Notice how all the KERNAL dinitialization has
already been done for us in this case.

For you MAX cartridge users, this brief out]ine‘should be a guide
to examining the RESET process yourself. A reference book such as
ANATOMY OF THE COMMODORE 64 will be an invaluable aid. There is
no substitute for studying the RESET process yourself. We can
only give you a few guidelines about what you should and- should
not do in your MAX cartridge. The only things you HAVE to do are
set the stack pointer to some value (usually $FF) and either
clear or set decimal mode (usually clear). You'll almost
certainly wart to use the screen, so you'll need to set up the
VIC chip. Look at the table of constants at $ECB9 to see what
values are put into the VIC's registers normally. Also remember
to turn the VIC on as done at $FCEF-F1, and select its memory
bank as done at $FDCB-CF. If you want to do a PAL/NTSC check, the
code at $FFS5E-6A can be your guide. If you want to set up an IRQ
interrupt, study the IOINIT routine and the code at $FF6E-7C.
Disk, tape or RS232 communications will require enormous amounts
of code. If you think you need any of these, you probably
shouldn't be using a MAX cartridge anyway.

We can also point some initialization routines Yyou WON'T need.
The CBMB80 check routine at $FD02 is not important since your MAX
cartridge has already been autostarted. You won't need the RAMTAS
routine ($FD50) which clears memory and tests for the end of RAM
/ start of ROM. Your program can easily clear memory itself, and
the end of RAM test would always yield the same results (the only
RAM is at $0000-OFFF). The RESTOR routine (FD15) is used to set
up RAM vectors for KERNAL routines which aren't available anyway,
so it can be dispensed with. In short, only the IOINIT and CINT
routines (and related routines) contain useful MAX initialization
code. A lot of this code is superfluous too. The best idea is to
plan out which functions you'll need and then study how the
KERNAL sets up just those functions.

To round out this chapter, we should look at one other subject of
general dinterest, WARM-STARTs (via the RESTORE key). We've
already covered the cartridge warm-start vector _at $8002-03,
which only applies to the CBM80 autostart method. There is one
other warm-start method. If the STOP key is held down along with
RESTORE, and there is no CBM80, the BASIC warm-start vector will
be used. This vector is located at $A002-3, normally in the BASIC
ROM. If we have a 16K cartridge ($A000 method), which replaces
the BASIC ROM, we can put our own warm-start vector in at $A002.
‘In fact, you should always put a valid vector there to guard
against the wuser accidentally pressing the RUN/STOP-RESTORE

combination.

EPROM HANDBOOK : _ PAGE 17

Finally, there is no warm-start method for MAX cartridges unless
you program it yourself. You may choose to use the RESTORE key
for this or some other method. If you don't use the RESTORE key,
you should set the 6510 NMI vector at $FFFA-FB to point to an RTI
instruction in case the user accidentally presses RESTORE. The
6510 is hard-wired to use $FFFA-FB as its vector when an NMI s

generated (RESTORE key pressed), just as it always uses $FFFC-FD
for its RESET vector.

2 — pPADS
RELET .—-—-1P EoR GuTToM
cmp ._._—.J /
E+TERMAL)\ EES

e —ﬁnm % To gt
P, oo

Ll PADS PADZ
T e 1
A o X
| E 330
 d - ki
+5v l. Ju 4
L
% ol i Sm
slae ™ aploe ey
.: iy m_‘E.._J :: L
- Ling [Y] anjiy
v 2 1 eeli%
369 o 8l.a po (7Y]
= n & bl
v mina B
24 ige ™ gt
z0 lion »;
" 22 oy, -
13 -9
& .
|1 -
"
19
1%
- -
PADS
2 o NN an
i Laz?
Rmeic " \
ki
[\\ T4LS507
ot 7 mlisr l
(T2 T T"‘”
Exmom 9 . Nt
| WIER LWR
v 1
GND -
ROMMH B r\
L
RE SET
. -

EPROM HANDBOOK > PAGE Ig

CARTRIDGE BOARD LAYOUT

PADL PAD2

PAD4 PAD3
Ri. -2
- |
@ PADS

o _/LINK OR CAPACITOR

. O

7407

EDGE CONNECTOR

RESET

BA NKl SWITCH

2764/27128
EPROM

EPROMMER 64

Eprommer 64 is a multi feature, low price eprom programmer for the
64/128. It connects to the user port of the computer and comes
with a comprehensive, menu driven , utility program supporting all
standard features for reading, programming and checking eproms.
The unit supports a range of devices from 32k upto 256k. Multiple
program voltages of 5v, 12.5v, 21lv & 25v make the unit more
versatile +than others generally available. EEproms can also be
programmed and erased with the Eprommer 64.

Eprommer 64 is built on a high grade PCB with quality components
throughout including a 28pin Zero insertion forece socket.

The software supplied has a host of features including;
* READ EPROM TO RAM * PROGRAM EPROM * VERIFY EPROM
* SAVES LOAD FEATURES * BLANK TEST * MACHINE CODE MONITOR

* CARTRIDGE GENERATOR.. Takes programs and converts them into
files suitable for programming into a cartridge.

All features including device type, voltage and program selections are
under menu control - no switches to mess about with.

* Program indicator LED * No external power needed ¥ No more to buy

Eprommer 64 is very simple to use and is supplied with full
instructions.

Comes complete with program on disk. Only 39.99 post free.

GOVAN ROAD
FENTON INDUSTRIAL ESTATE
STOKE-ON-TRENT
STAFFS
Tel: 0782 744707
Fax: 0782 744292

